Readiness and resiliency: engineering that saves lives

In an image from the IMAX film, Dream Big, engineer Menzer Pehlivan and a group of children enjoy a ride on a roller coaster, a feat of engineering that brings fun and thrills to people everywhere. Photo credit: MacGillivray Freeman Films.

Q. What or who inspired you to become an engineer?

My interest in engineering started with the Kocaeli Earthquake and the devastation in Turkey, my home country, following that event. I was a 13-year-old living in the capital city of Ankara, located approximately in the center of Turkey, when the earthquake hit the northwest region of the country around 3:00 a.m. on August 17, 1999. Although the epicenter of the magnitude 7.4 earthquake was approximately 200 miles away from our hometown, my family and I awoke in fear due to the strong shaking in our apartment. There were more than 17,000 casualties, tens of thousands of injuries, and hundreds of thousands of people left homeless. Hearing that thousands of lives could have been saved if the structures had been designed to satisfy life safety criteria, inspired me to become a civil engineer and to focus on earthquake engineering. I have a strong desire to help reduce risk and increase resiliency —ahead of future natural disasters.

Q. As a geotechnical engineer, you specialize in engineering buildings that keep people safe. How do you learn which building designs and materials increase resiliency in natural disasters?

Geotechnical earthquake engineering is still a young and advancing field. The practice is steadily progressing with evolving technologies that make more advanced computations possible. However, we get the most valuable information through extreme events, which provide us with an opportunity to examine how hazard-resistant design practice performs because it is difficult to replicate the behavior of full-scale, naturally deposited soil over thousands of years in a laboratory. Understanding the performance when a disaster occurs and accurately documenting the post-disaster observations are crucial for advancing engineering practice to reduce risk and increase resiliency before the next natural disaster. Case histories from each event demonstrate the success of good hazard-resistant design practices as well as those that need improvement.
After the 2015 Gorkha Earthquake, I traveled to Nepal for post-earthquake reconnaissance with the Geotechnical Extreme Events Reconnaissance (GEER) team. I spent ten days in Nepal with the GEER team, and we collected valuable data on site response and topographic effects, liquefaction and other ground failure mechanisms, and damage to infrastructure including hydropower plants. During the mission, we had the opportunity to interact with local engineers and to discuss findings, remaining hazards in the region, and potential future actions needed to increase the resiliency, and reduce the earthquake-induced risk, especially for the developing hydropower infrastructure that is of prime importance for the country. We compiled the geotechnical field reconnaissance findings in a GEER Association Report (GEER-040). The report was made available shortly after the 2015 earthquake sequence for researchers and engineering professionals, who can help advance the local state-of-practice and reduce the risk associated with earthquake-induced hazards in the region.

“Every project has its unique challenges, and as engineers, our job is to find the most efficient solution to each problem.”

Dream Big delves into the inspirational story of civil engineer Menzer Pehlivan, who as a young girl experienced a devastating earthquake in Turkey. Here, Menzer uses everyday items to demonstrate to children how engineers design and build earthquake-proof structures. Photo credit: MacGillivray Freeman Films.

Q. Can you tell us about your job (interesting projects you are currently working on) and the skills you need to be successful?

After graduating with my doctorate from The University of Texas at Austin in 2013, I started working as a consulting engineer. I worked in New York City for couple years, and I am currently working as a geotechnical engineer with CH2M in Seattle. I specialize in the analysis of seismic site response, liquefaction and other natural hazards, soil-foundation-structure interaction, probabilistic seismic hazard analysis (PSHA), seismic design of foundation of structures, and performance based design in geotechnical earthquake engineering.

I worked on the geotechnical and seismic design of projects in the U.S., Mexico, Canada, and Costa Rica. Every project has its unique challenges, and as engineers, our job is to find the most efficient solution to each problem. Engineering requires teamwork, and I feel fortunate to work with talented professionals from different backgrounds throughout each project, which provides me with excellent learning opportunities every day.

Engineering is more than just math and science. It is more about imagination, creation, innovation, and teamwork. It is about being open to new ideas, new solutions, and new visions since the engineering profession is continually advancing.

“Engineering is more than just math and science. It is more about imagination, creation, innovation, and teamwork. It is about being open to new ideas, new solutions, and new visions since the engineering profession is continually advancing.”

Q. Do you have any recommendations for engineering grads starting their careers?

Throughout my career, I have benefitted from being involved with professional societies, and I strongly recommend industry participation for every young engineer. During my Ph.D., I took a leading role in the development of the National Student Leadership Council of the American Society of Civil Engineers (ASCE) Geotechnical Engineering Institute (Geo-Institute), for which I served as vice-chair and chair. Recently, I played a leading role in the development of ASCE Geo-Institute’s Board Level Outreach and Engagement Committee, and I am currently serving as the chair.

Being active in professional organizations gave me the unique opportunity to interact with engineering professionals from different backgrounds, learn about the projects they are working on, and have a venue to showcase my work to other professionals. Through my involvement, I started building my network in the industry earlier in my career; now I have professional connections with different specializations across the world that I can collaborate with depending on the needs of a project.

Q. Anything else?

In 2016, I was one of the New Faces of Engineering selected by ASCE. Later on, that nomination led me to be a part of the Dream Big: Engineering Our World, an IMAX movie that aims to inspire next generation, especially girls, to follow STEM careers by changing the stereotypical image of engineers in society. Through Dream Big, we are hoping to reach to kids and show them engineering is fun. Through engineering, they can make an impact in the world and change the people’s lives for better. Moreover, the film shows that they can be successful in engineering regardless of their gender and their background. All they need is to believe in themselves and keep dreaming big. The movie premiered during Engineers Week in February 2017, and the feedback we have been receiving since then has been amazing. In one of the premieres I attended, a girl asked me the project I am most proud of is, and I replied saying “This is it!” It is very rewarding and satisfying when a little girl comes up to you and says “I did not think girls like you can be engineers and change the world! Now I want to be like you too.”