Embracing Transformation: How efficiency strategies are changing how we work, learn and succeed

Roving NEF reporter Malcolm Smitherman, a Miami University junior computer engineering major with a minor in physics and a member of the Lockheed Martin Leadership Institute talked to Louise Morman a former senior management executive in the energy sector, a systems analyst and expert in leadership and transformational learning, who leads the Lockheed Martin Leadership Institute, an intensive three-year transformational leadership development program for engineering and computing students. Here’s their conversation.

Q. How do you describe digital transformation?

Digital transformation is strategically changing all areas of your business, how you operate and deliver value to your customers, with the help of digital technology. That change requires an accompanying culture change.

There is no question that major changes will occur when our current college students are in the height of their careers. I cannot predict exactly what the developments will be in artificial intelligence, machine learning, robotics, 3D printing, cloud computing, and other digital innovations, but I am sure that we will see dramatic impacts. I believe there will be end-to-end transformation in how organizations do business in most industries.

The work world will change in ways we haven’t seen in the past and well beyond hourly workers. All kinds of occupations will see change including engineers, accountants, coders, surgeons, etc. Computers are very effective at handling logical and process-oriented activities. The work of knowledge workers and college graduates will be replaced so people will have to constantly reinvent themselves and deal with a never-ending change journey throughout their careers.

However, when we started, I didn’t really think of the work of engineers being replaced by non-humans. Now I realize that resiliency is essential for survival in their future work world.

Q. Today there exist many advanced digital technologies that have yet to be utilized in the work space. If using them were to mean greater efficiency for a business, why do you think businesses haven’t taken advantage of them?

Digital transformation is a hot topic and it is definitely on the minds of CEOs who are planning for a successful future. But many initiatives stall. Technology is the easy part. How people deal with change is a bigger stumbling block. Digitizing scattered elements of the business is not that effective. To thrive in the digital era, a systems thinking approach is needed and that means rethinking the overall business, with a customer-driven emphasis. Culture change is hard.

Q. Considering your high-level business executive experience and your last seven years in higher education working with future engineers and computer scientists, what do you think are the major mindset gaps? What leadership areas need more emphasis in undergraduate education to prepare for the digital era?

After absorbing thoughts from dozens of books, papers and reports on the topic of digital transformation, I came up with the following list:

Internal Courage/Strength – Being your best evolved self

  • Self awareness
  • Open mindedness and inclusion
  • Humility – keeps us in touch with all we don’t know
  • Embodying our humanity
  • Overcoming fear of conflict and risk

Embracing Change – Adaptability

  • Comfort in uncertainty and unstructured environments
  • Navigating through complexity, chaos and confusion
  • Resiliency – especially when the change isn’t our idea
  • Growth mindset
  • Curiosity and reinventing ourselves
  • Learning from failure

Strategic Thinker – Holistic

  • Big Picture
  • Systems thinking
  • Customer obsessed
  • Forward thinker
  • Creative Thinker
  • Transformative vision
  • Ideas based on intuition and insights as well as data and history
  • Openness to new ideas and possibilities

Collaborative Spirit

  • Collaborative problem solving
  • Emotional Intelligence
  • Heart


Q. How will your research into digital transformation change what you do in the Lockheed Martin Leadership Institute?

Working with people while they are in college to help them become comfortable with ambiguity and change was something we considered important when we created the program over seven years ago. Our goal was to help our technical students become more successful throughout their careers and lives. We emphasized self-awareness, people leadership and strategic thinking. However, when we started, I didn’t really think of the work of engineers being replaced by non-humans. Now I realize that resiliency is essential for survival in their future work world.

Also, we need to do more work in “unlearning.” Today’s students have been conditioned since kindergarten to have clear expectations of what is expected of them. Unfortunately, the future does not have a syllabus with exactly how many points you need to get an A. Giving our students practice in the messiness of the real world will help prepare them to navigate the future.

Follow along with Malcolm and Louise in their digital transformation journey on Twitter.

Serve, Preserve and Inspire: A Conversation with the Architect of the Capitol’s Christine Merdon

Photo courtesy of Architect of the Capitol

Q. We read that working for Architect of the Capitol is a lifelong dream come true for you. What lit that spark of passion to “serve, preserve and inspire” our national monument?

My mother is my biggest role model. She is an immigrant who moved to the United States, supported three children working as a hairdresser while also earning a college degree at night. Her journey, in my view, is the American dream. Inspiring others through my service by preserving our national monuments is my way of giving back for all that this nation has given my family.

Q. Which monument or building is your favorite, and why?

Probably the U.S. Capitol Building. We recently completed a restoration of the building and it looks amazing. More importantly, it is a facility seen on newscasts around the globe as the symbol of democracy. It doesn’t get much better than that.

Q. In addition to the remarkable work you do today on the U.S. Capitol, Supreme Court, House and Senate Office Buildings, Library of Congress, and Botanic Garden (among others), the list of projects you helped lead prior to joining the Architect of the Capitol is equally jaw-dropping. What one word or phrase comes to mind for you when you reflect on your work in the private sector?

Perseverance and pride

Q. Engineers are known for solving problems no one else can solve. It’s conceivable that preservation of our nation’s aging buildings includes solving one problem after another. What’s one you and your team had to overcome to keep our iconic capitol buildings safe and beautiful?

The scaffolding system for the Capitol Dome restoration was really challenging and unique. We erected 25 levels of scaffolding, weighing 1.2 million pounds, around the entire Dome. The scaffolding was supported at three points on the Dome structure itself (peristyle, boiler plate and tholos walkways) and not on the roof of the U.S. Capitol. Real time monitoring of scaffold loading was performed to ensure that load bearing capacity at any one point was not exceeded. Additionally, the installation of the scaffolding started 100 feet from the ground and rose from there. It was a technical – and very public – challenge.

Photo courtesy of Architect of the Capitol


Q. Your education and training include a bachelor’s and master’s of science in civil engineering. With the Department of Education predicting that 65 percent of all jobs in the United States will require some post-secondary education by 2020, what do you do to keep your engineering and project management skills sharp?

I consider myself a seeker. I am always looking for new opportunities and challenges to test myself. I attend continuing education courses and participate in conferences and other events. I also value learning something not traditionally associated with engineering. I have taken art classes at the Corcoran School of Art as well as the Torpedo Factory Art Center.

Q. We’re going to assume you can’t share many details, but what can you tell us about your time in the White House Military Office and managing classified design and construction projects at the White House and Camp David?

You are correct! I cannot share a lot of details, but it was quite exciting.

Q. What’s the most rewarding part of your job?

I get to do something different every single day. There is never a boring week and there is always a new challenge to tackle. The team at the Architect of the Capitol are the some of the best tradesmen, craftsmen, architects, engineers and service providers in the world. It is a dream to work with them in our nation’s capital.

Swimming with the big fish… How to thrive in engineering school

It’s a new academic year, and there’s no better time for great advice from those who’ve been there. Take note! It’s time to get up, get noticed and get ahead.

Start early

Hayden Bauschka studies mechanical engineering at Purdue and says, “Don’t only take afternoon classes; every minute you sleep in is lost time for school and free time to help balance your life. I highly recommend taking a block of morning classes to wake you up and get you moving.”


Speak up

University of Colorado Boulder business major Colby Jimenez says, “Don’t be scared to talk to new people. The more people you meet at college, the better. This will help make long-lasting relationships, networking, and connecting with people you wouldn’t normally meet.”

That goes for the people standing in the front of the room, too. “Introduce yourself to your professors and talk to them often,” says Mason Blanke, electrical engineering and physics major at the University of Alabama. “In big lectures, it is easy to slide by without ever even meeting them or making yourself known. Ask them about research opportunities that are available and do the extra credit and optional homework.”


Accept no limits

Matthew Culver, computer science and history major at the University of Alabama, says, “Diversify! Don’t stay within your discipline. If you’re mechanical, learn a bit about electrical or chemical. Don’t limit yourself to one area of expertise.”

Florida International University Mechanical Engineering Major Steven Castano says, sometimes more is better, “If you’re feeling like you are not doing a lot of meaningful work, ask other engineers if they need help and expand your commitments.”


Stay calm and study on

Areef Chaudary studies mechanical engineering at the University of Connecticut and says, “At times during your engineering courses, you will get lost and won’t understand how what you’re learning is applicable. You probably won’t even know what is expected of you at future jobs and how to apply what you’ve learned. Trust me and just stick with it. As long as you are passing your courses and have a good work ethic, you will be ready for a job in the industry.”

And remember, what got you here may not get you there. Rochester Institute of Technology Computing Security major Thomas Coburn says, “Develop good study habits and time management skills your first semester. Experiment with different methods and find out what works for you.”

Paige Smith, a senior Biomedical Engineering major at Miami University, agrees, “Keep a calendar or planner of assignments and events… Get to know your classmates and form study and support groups.”


Have a little fun

It’s about balance. Jessica Brewer is part of the information security policy and management graduate program at Carnegie Mellon University and offers this advice: “Do your best to maintain a healthy balance of social activities, studies, and recreational outlets (e.g., yoga, running, hiking, etc.). Getting into a healthy routine early can profoundly impact your college career.”


Change the world

Darren Bruner, aerospace engineering student at the University of Colorado Boulder, says, “Study something you are passionate about and that you feel will have a meaningful impact on the world. Don’t focus on the paycheck, but rather the purpose; how will you leave the world a better place than you found it with your career? You don’t need to be a global politician or world-renowned scientist to make a difference.”

What are you waiting for? It’s time to get out there and do great things. Best of luck as you go back to school!

Want more? Follow NEF on Twitter for your awesome engineering news every day and more great advice from the front lines of academia all month long.

Life hacks and laughs… A conversation with Innovation Nation’s Alie Ward

PHOTO CREDIT: Justin Zangerle

If you like your engineering and science with a dose of humor, Alie Ward’s got you covered. She’s the Emmy Award-winning science correspondent for CBS’s “The Henry Ford’s Innovation Nation with Mo Rocca,” and host of the smart and hilarious “Ologies” podcast. But her STEM exploration doesn’t stop there. She’s on the Science Channel’s “How to Build Everything,” and, along with Adam Savage of Mythbusters fame, she co-hosts GE’s “In the Wild” and finds time to be on Cooking Channel’s ongoing show “Unique Sweets.” She’ll also be part of two new science shows for Netflix, and when she’s not doing all that, Alie answers Q&As for NEF.

Q. You studied biology before earning a degree in cinema at UC Santa Barbara. Did you think then that you’d end up where you are today, telling fresh and fun stories about the engineers and scientists who make cool things happen and improve lives?

You know, I think if I would have known I’d have this cool of a job, I would have relaxed a little while I was in school. I always loved the arts but also loved science and I always thought — if I couldn’t pick just one of them — then I had to be really driven in both in case I needed one as a plan B. And I’m so fortunate that my work involves both science and entertainment; it turns out I didn’t have to chose just one. The other aspect of my job that I love is how inspiring the scientists and engineers are; hearing how an idea was born and the resourcefulness and hard work it took to make it a reality are just excellent fuel to keep me motivated in my own life, whether it’s in pursuing new projects or getting through a long travel and shoot day.

Q. One of the things we like about Innovation Nation is how much information and knowledge gets conveyed in a brief amount of time. Does that make it challenging to convey technical information, or is it a good forcing function to help you break down complexity and get to the core of what the audience needs to know?

It definitely is a challenge to convey the technical details in a short window of time but viewers can also do more research on the product or invention after the show. What is most painful to exclude, in my mind, are the amazing details about what might inspire the inventors themselves. We always keep those thoughts in the story if we can, but the full interviews we shoot about perseverance are so inspiring and I wish sometimes we had an hour per segment to include all the details.

PHOTO CREDITS: Stephanie Himango/Innovation Nation

Q. Tell us about the most interesting inventor you’ve profiled.

I was so blown away by Atlanta-based inventor, Lonnie Johnson. The man has so many patents for various inventions, was a NASA engineer who worked on the Galileo spacecraft that orbited Jupiter and also invented the SuperSoaker water toy, which ended up earning him millions of dollars. He uses that revenue to help fund other engineering projects, like batteries with improved efficiency, and to help fund robotics teams and mentorship. He’s just incredibly brilliant and inspiring and it was such an honor to interview him. I fanned out pretty hard and then also lost my mind with glee getting to run around this factory squirting water at targets.

Q. How about the inventor with the best sense of humor…

I have to give that distinction to then 73-year-old Merle Freeman, who came up with the idea for bracelet called Paxie, which helps alert parents about their children’s health and safety. She was so dedicated to keeping kids safe — but also had the most hilarious sense of humor off camera that might make a sailor blush. I adored our conversations when the cameras weren’t rolling, but uuuhhh… I could not relay any specifics in this publication. Trust me.

…so many innovators stress that failure is PART of success. You will have plenty of microfailures — and maybe some big ones along the way — and it’s all part of the creation and evolution of an idea.

Q. While those in the STEM fields take their work and research seriously, humor plays a big part in your storytelling – both on Innovation Nation and your own podcast Ologies. When did you first test using humor in science? Was it a natural fit or did you have to work at finding the right way to weave in puns and laughs?

I think it’s all about balance. I think some people might be intimidated by science because there’s a perception that it lacks a human element; that science is all data and numbers and impersonal. But actually scientists are curious and warm and hilarious and have great stories so it’s been a passion of mine to show that side of science as a way of breaking down that intimidation. Also, science is so genuinely funny. Natural science is all about weird mating behaviors and fear responses and any experiment starts with a question and has countless failures and mishaps before it’s successful. It boggles me why more people don’t approach it with humor but I’m not mad that there’s less competition; I’LL BE HONEST.

PHOTO CREDIT: Stephanie Himango/Innovation Nation

Q. You’ve interviewed engineering pioneers – from the inventor of 3-D printing to emerging engineering entrepreneurs like the creator of a Welsh inland surf park. A lot has been written about the advice successful innovators have for people aspiring to do the same, but we’d like to know: in the course of interviewing so many engineers and scientists, did they share pitfalls they wish they’d avoided along the way, or caution signs they missed as they pursued their dreams?

Please know that I milk these geniuses for life advice ALL THE TIME. It’s like: if anyone knows how to life-hack, it’s folks on the verge of a Nobel Prize. One great piece of advice I’ve heard is not to hoard your ideas because they’re not perfect yet. Rather, get them out into the world and ask for some help and input in making them better. There’s so much worry about imperfection that a lot of people would rather sit on an idea than never try and fail — but so many innovators stress that failure is PART of success. You will have plenty of microfailures — and maybe some big ones along the way — and it’s all part of the creation and evolution of an idea. I definitely took that to heart when I was wanting to make Ologies but was worried it wasn’t good enough to release yet. Every time an innovator would suggest just jumping in and making an invention happen, my producer Stephanie would give me a knowing smirk and a side-eye … until I finally launched the podcast. Turned out — those innovators were right. Just do the thing and figure it out as you go.

All in all, it’s been great to not only deliver science info that has relevance but at the end of the day — and literally at the end of each show — imparts the advice, “Dream big, and don’t quit,” which is a great motto for anyone.

PHOTO CREDITS (from left to right): Stephanie Himango/Innovation Nation; John Murphy/Innovation Nation; Lila Higgins

Q. What innovation haven’t you covered that you’d like to one day?

Recently, Innovation Nation was shooting a story on a jet-powered hoverboard invented by Franky Zapata and it was one of the most insane things I’ve ever seen. I’m still reeling from wonder and I can’t wait for it to air. And one story I keep wanting to cover is an app for speed-reading, upping the words per minute to something like 500. As someone who loves reading but is on the go all the time, I just want to put more books into my brain faster.

Q. What feedback do you hear from viewers? Is there a difference in what you hear from STEM folks and non-STEM fans?

I hear a lot of great feedback about how inspiring it is to see rough, ugly prototypes of items that have become so familiar: I love showing viewers that an idea will evolve and get better as you make iterations and fix the things that don’t work. A lot of otherwise-non-STEM fans I think extrapolate those principals to other areas of their lives, which I love. And many STEM fans love hearing the history of inventions and seeing what’s on the forefront in terms of new technology. All in all, it’s been great to not only deliver science info that has relevance but at the end of the day — and literally at the end of each show — imparts the advice, “Dream big, and don’t quit,” which is a great motto for anyone.

Emmy Awards honor the engineers who make TV worth watching

On Sunday, April 8, the National Academy of Television Arts & Sciences (NATAS) will honor winners at the 69th Annual Technical and Engineering Emmy Awards. Among the honorees is Lifetime Achievement Award winner Richard Friedel, executive vice president, Technology and Broadcast Strategy for Fox. We talked to Friedel and Robert P. Seidel, CBS vice president of Engineering and Advanced Technology and chairman of the NATAS Technology & Engineering Committee, about why it’s important to recognize engineers and the role of technology in entertainment.


Q: For generations, television has been an intimate part of our lives – bringing families together to entertain and delivering important news and information to the public. The NATAS Technology & Engineering Emmy Awards are given to individuals or companies “that either represent so extensive an improvement on existing methods or are so innovative in nature that they materially have affected television.” When it comes to making TV more enjoyable and compelling for the audience, what has been the most impactful technological advancement?

Robert P. Seidel: During the early days of television, there were two ways to present entertainment and news information. Specifically, live or film. The advent of video tape allowed for programs to be recorded, edited and broadcast very quickly. Many older viewers will remember the phrase “film at 11” because the six o’clock news was unable to present footage of the actual news event. The need to provide live breaking news led to the development of electronic newsgathering and the incorporation of multiple technologies such as video tape and microwave transmissions. The next growth of this technology was satellite newsgathering, which enabled the events of the world to unfold in your living room. This technology created a “global village” of television viewers and, in many cases, brought about social changes, such as coverage of the civil rights movement, the student uprising in Tiananmen Square, China, or served as a milepost in our lives; where were you during the Kennedy assassination, the first lunar landing, or the terror attacks on 9/11? The addition of High Definition television with its crystal clear widescreen images, surround sound and improved color fidelity enhanced the viewing experience by providing a “like you are there” window to the world.

Q: Let’s go back a bit to the start of your careers. How did you get into television?

Richard Friedel
photo credit: 21st Century Fox

Richard Friedel: Since childhood, I’ve always been interested in electricity and electronics. I would mess around with my parents’ hi-fi system and other things around the house. I was fortunate that my high school offered an electronics program. I jumped at the chance to learn the fundamentals of electronics. The third year, there was no set curriculum; instead, we had to complete a project. The school had just received some defunct television equipment from the old Dumont TV Network. A friend and I were assigned to turn it into a simple TV station for homeroom announcements. That project is what got me started.

At Drexel University, there was no student television activity, but there was a radio station. When they learned I could actually repair equipment, I was immediately added to the engineering department. That was the beginning of my experience with broadcasting.

Drexel had a cooperative education program, so I returned home to Washington, D.C. to work. While there, I enrolled in broadcast and engineering courses at the University of Maryland and became involved with the school’s radio station too.

After I graduated, a friend asked me to help him run the university’s Radio-TV-Film Department’s technical facility. There I learned about professional television equipment and system design, which eventually led to a job with WRC/NBC.

RS: I started dabbling in television at my high school when I got involved with their local cable access program called “Knight Life.” At Lehigh University, I was the chief engineer of the two radio stations and built two black and white TV studios for their local cable channels. After graduating from Lehigh with a bachelor’s degree in electrical engineering, I looked for a career in television broadcast engineering. I started as a design engineer with CBS in the mid-‘70s. Some of the projects I have worked on include designing studios for Walter Cronkite, mobile units for CBS Sports, a RApid Deployment Earth Terminal (RADET) (i.e. portable satellite uplink dish) that could be shipped to anywhere in the globe to cover a fast-breaking news event. In 1996, I headed up the team that made broadcasting history when WRAL-HD, the CBS affiliate in Raleigh, North Carolina became the first commercial high definition television station to sign on the air in the United States. On October 29, 1998 CBS launched their high definition network service with the coverage of John Glenn’s return to space on the Space Shuttle Discovery. The event was carried on eight early-adopter TV stations. In those days, we knew all our viewers on a first name basis. This was followed by the broadcast of four NFL games in HDTV. At that point in time, most prime time shows were photographed on 35mm film. In order to cover the cost of converting the film to HDTV, I had to go out and sell advertising to offset the cost. A graphic at the bottom third of the screen would inform the viewer “This program is in HDTV by Mitsubishi, or Samsung or Panasonic, or RCA.” If the viewer did not have an HDTV, then they knew they were missing something. For the 1999-2000 TV season, CBS converted most of their prime program schedule to the highest form of HDTV.

Robert Seidel (kneeling) cueing the Reading High School Knight Life Television Staff

Why is it important to celebrate television’s achievements in engineering and technology? How does your training as an engineer factor into your role?

RF: Television is a technologically driven industry. Whether it’s how we create programming, produce it, transmit it or monetize it, it all requires technology. I was taught that engineering is the business of technology. So, my engineering training was what I needed to be effective and successful at applying technology to business solutions. A lot of experience and a little luck helped too.

RS: It is important to recognize the achievements of engineers and technologists for innovations like HDTV and digital television because you want to encourage continued thought on how to improve existing technologies. In February 2000, Neil Armstrong spoke to the National Press Club regarding the advancement of understanding of the critical importance of engineering. He said, “…Almost every part of our lives underwent profound changes during the past 100 years thanks to the efforts of engineers, changes impossible to imagine a century ago. People living in the early 1900s would be amazed at the advancements wrought by engineers.” He went on to say that “…as someone who has experienced firsthand one of engineering’s most incredible advancements – space exploration – I have no doubt that the next 100 years will be even more amazing.”

In February 1981, CBS demonstrated HDTV for the first time in the United States at the Winter Technical Conference at the Society of Motion Picture and Television Engineers. At that point in time, it was unthinkable that we would be asking to replace every television set in America, every television studio, every edit room and every transmitter for this new technology. Yet today, HDTV has become a global phenomenon that permits the viewers to experience the event as if they were there. Recognition of these achievements helps motivate engineers and technologists to keep asking themselves how they can create something new or make an existing product or technology better.

It is important to recognize the achievements of engineers and technologists for innovations like HDTV and digital television because you want to encourage continued thought on how to improve existing technologies.
– Robert Seidel

give us a glimpse into what it’s like for the Technology & Engineering Achievement Committee to select the Emmy honorees. What consistencies do you see in the award-winning innovations that set the industry standard for excellence?

RS: Every year, a committee of approximately 55–75 television industry engineering professionals and innovators volunteer their time for a three-meeting cycle to consider technology nominations. At our first two meetings, we review category nominations submitted to the committee for consideration. These nominations are broad categories of technology and are not product specific. For example, a video storage nomination could include film, videotape, digital video disc, and solid-state storage. At the end of the second meeting, the committee votes on the technology categories that will be investigated and assigned subcommittees who will conduct in depth research into the technology including patents, first public demonstration, and organizations and individuals who have materially affected television with this technology. At the third meeting, the subcommittees present their findings to the larger group and specific products or individuals that may be “Emmy worthy.” A vigorous discussion usually ensues prior to the full committee vote. At the end of these discussions, a vote is taken by secret ballot. If the technology receives affirmative votes from two-thirds of the committee, an Emmy is awarded to the organizations or individuals recommended by the subcommittee. These results are kept confidential until the winning organizations and individuals are notified by the Chairman and a press release is issued by the National Academy.

Technologies or living individuals are awarded Emmys because they represent so extensive an improvement on existing methods or are so innovative in nature that they have materially affected television.


Richard, what’s it like to find out you’re getting the Academy’s Lifetime Achievement Award in Technology?

RF: Surreal. I had no expectation for an Emmy. I guess that sentiment is true for most of the honorees who receive this award. I still can’t believe that my peers recommended me for this honor.

Where will you keep this Emmy?

RF: I haven’t given that any thought. I’d like to place it publicly outside my office so my team can be inspired by it. They are the reason I’m being honored. Without their efforts and energy this could never have happened.


Richard, you’re responsible for overseeing FOX Networks Engineering & Operations including the network’s long-term technology strategy and day-to-day operations for the Fox Network Center in Los Angeles and the Fox Houston Technical Operations Center, home of Fox Sports’ regional networks, and providing technical support for 14 regional production centers… how important is it to stay on the cutting edge of technology in television?

RF: Staying current with technology, not just television technology, is essential. The media and entertainment business is being heavily impacted by consumer adoption of broadband connected electronic devices and new distribution methods utilizing the Internet. To succeed in the future, broadcasters and media studios must adopt internet technologies and computer science techniques to successfully compete. For example, to better understand what consumers like or want, we are now using big data technologies, analytics and AI (artificial intelligence) to better understand our audiences. We are investigating block chain techniques for use in tracking information about content creation and for our advertising sales and rights. We are also currently developing applications that leverage machine learning and AI to help discover and monetize content that we own.

To succeed in the future, broadcasters and media studios must adopt internet technologies and computer science techniques to successfully compete.
– Richard Friedel

Richard, What’s the most exciting part of your job at Fox?

RF: This may sound like a cliché, but, it is trying to understand what the future of television and broadcasting is as our business is being disrupted by both societal and technological changes. What could be more exciting than to help figure out how our society will all be educated, informed and entertained in the future? And how Fox will be a major part of that.

Robert, What’s the most exciting part of your job at CBS?

RS: As a toolmaker for the entertainment industry, I get to design and evaluate new technologies that enhance the story telling process for the creative community. We work with all divisions including CBS News, Sports, and Entertainment, helping to design, build, test and rollout new technologies into the production and distribution process. An example of a recent project is our Over-the-Top (OTT) Internet service, CBS ALL ACCESS, which provides access to the live-linear local station’s over-the-air signal, as well as thousands of episodes of CBS programming, on mobile phones, tablets, PCs, other streaming devices.

“With digital TV, we’re selling the value of being involved with a new technology,” says CBS’ Robert Seidel. The 1998 Winter Olympics were broadcast in HDTV.

What advice can you share for the next generation of network engineering executives?

RS: In addition to your engineering major, I would take a variety of economics and accounting courses. Join industry professional groups as a student member, such as Society of Motion Picture and Television Engineers (SMPTE) or IEEE. These will provide great networking opportunities.

RF: I think this advice applies to much of life. First, find a field that truly interests you. Second, be and stay curious about technology, the business and how society reacts to changes in both. Third, always strive to be the best. And, always help others along the way. These traits will help you throughout your career.

Finally, I would add that I have always believed that luck comes to those who are prepared. I’d suggest being active in at least one or two professional societies or trade associations that create standards and support industry endeavors. The fellow engineers you meet will help you stay on top of technology, develop networking skills and challenge you to work with them to invent the future of your business.

Robert Seidel and U.S. Rep. Greg Walden, R-Oregon, at the top of the Empire State Building, the home of the first HDTV station in New York City. Walden is a former radio station owner and chairs the House Energy & Commerce Committee.

Celebrate Engineers Week 2018

Q: Why is important to have an annual Engineers Week?

Leslie Collins

It’s important to bring visibility to engineers and the work they do. Engineering has been referred to as the “stealth profession.” The results of engineering are certainly visible and used daily. But engineers? They’re not recognized. If we are going to encourage future generations of STEM – emphasis on the E – professionals, they must have contact with engineers and the chance to try engineering, even in small, hands-on ways.

Q: What are you hoping young people will get from this year’s theme: Engineers: Inspiring Wonder?

I hope they will understand that engineers create today’s awe-inspiring wonders, from deep sea exploration to cloud-busting skyscrapers. I hope they are inspired to wonder what the next great innovations might be and how they can play a role in creating them.

Q: How can engineers, educators and parents help keep the inspiration going all year?

Continue to introduce students to role models. Be sure kids are getting the right messages to reinforce that engineering is creative, team-based, and helps people. Find ways for kids to explore engineering. There are simple hands-on activities at discovere.org along with tips on how to talk to kids at a variety of ages about what engineers do.  Engineering activities help kids understand how they can use the science, math, and technology they study.

Q: Introduce a Girl to Engineering Day is part of Engineers Week. Why is it so important to have a day dedicated specifically to showing girls the wonders of engineering?

We know that girls are under-represented in STEM education and in many STEM careers. Here at DiscoverE, we know that girls are interested in and more than capable of success in engineering. Look at the Introduce a Girl to Engineering Day event at the University of Texas – Austin where they host 6,000 girls. We’ve met current college students whose first engineering experiences were through a Girl Day event.

Q: How can people take the first step to participate in Engineers Week?

There are lots of ways to take an initial step or to take a big leap. First, whether a skilled volunteer, educator or parent, visit discovere.org.  Our mission is to support volunteers and everything we provide online is free and adaptable, whether you want to work with one youngster, a Scout troop, or in a more formal class setting.  And join the conversation on Twitter, Facebook and Instagram using #Eweek2018.

Investing in the Future

Photo credit: GE Foundation

As Executive Director for Education for the GE Foundation, Kelli Wells influences the future of American engineering. She’s focused on managing partnerships to close the skills gap and ignite a spark of passion in students as they realize what being an engineer really means.

Q: Solving the capacity challenge, or the “skills gap,” is a priority of GE Foundation. How do these efforts specifically benefit engineers?

As the first digital industrial company, GE is acutely aware of the need to expand the number of students who ultimately pursue degrees and careers in engineering fields and to broaden the participation of underrepresented populations. Increasing engineering skills for all students is critical to achieving a scientifically and technologically literate society that will enhance our nation’s global competitiveness.

Through our commitment to engineering, we are investing in the next generation’s problem solvers to look at what will be needed in the economy and address it through world-class education pipelines. We are working across stakeholder lines to equip all students with the education, skills and training that they need for the demands of the workforce and the global labor economy. Through our initiatives, engineers cultivate both technical skills and essential skills necessary for career success.

Q: Tell us about the concept behind the GE Brilliant Career Labs. How are the lab’s physical and virtual learning experiences helping students explore career options and find future engineering jobs?

The GE Brilliant Career Lab is a first-of-its-kind mobile and digital technology lab experience designed to prepare students for the digital industrial jobs of the future. The mobile lab combines experiential learning with career-readiness planning in high-demand STEM fields, offering both technical skills development and essential skills training. Through the mobile lab, students become familiar with new technologies, such as 3-D printers, laser cutters, milling machines, and programming tools. They are able to work on projects to help them understand the uses and features of the equipment. The Brilliant Career Lab’s virtual experience website houses career assessments that identify potential STEM and computer science careers paths for each student, and interactive activities that teach students about specific opportunities based on their interests and skills.

Q: Do you have a story you can share of a student who benefitted from the GE Foundation and went on to pursue a career in engineering?

Three years ago, a Boston student, Rafaelo, and his mother moved from Puerto Rico to Boston with nothing but the clothes on their backs. Shortly after arriving in the U.S., despite his mother having secured a job at Walgreens, they became homeless and landed in various shelters. Finally, an aunt was able to take them in. The apartment complex they lived in had rampant drug use, gangs and violence. Each day was a struggle because he was focused on surviving, which meant, staying out of gangs, staying clear of drugs and staying out of fights.

Six months ago, Rafaelo was introduced to the Brilliant Career Lab and began exploring various STEM careers for the first time. Rafaelo’s world began to open with possibility; he took a career assessment and fell in love with the idea of becoming an engineer. This spark has grown into a passion, and Rafaelo said, for the first time, “I can see myself going to college. I learned that I could study computer science and become a video game designer.” Rafaelo is currently working on his application to several Boston area colleges with the goal of becoming an engineer.

Photo credit: GE Foundation

Q: The course of your career includes an impressive twenty years at GE. Before your current role in corporate citizenship, you worked in asset management, quality, and international marketing. What have you gained from trying out different roles in different areas of the business?

For me, cultivating different perspectives is critical. I am grateful for the various roles that I have held because they inform my thinking now. I am able to approach problems from different angles.

I also think it helps me to be empathetic. In my work, I engage with business leaders, educators, students and politicians. Because I have worked in various roles, I am able to see different perspectives. I am able to build connections, identify shared values, and build cohesion among stakeholders.

As I talk to students, I stress my diverse background and tell them that the skills that they develop are not necessarily about specific technical skills, but more broadly about becoming a problem solver, a critical thinker, a dreamer and a doer. These are skills that are fundamental to success no matter the job title.

…being an engineer is the privilege of being the most creative problem solver in the world – with the tools to actually solve the problem! It doesn’t get better than that!

Q: What do you enjoy most about helping the next generation of engineers and scientists?

It is so exciting to see the spark of intrigue in a student. And then it’s even more fulfilling to watch that spark turn into genuine interest, turn into a college experience, turn into a career. Passion starts somewhere, and I am in the great position of being able to watch that process happen with students every day.

On a personal level, I love our country and love that we are a nation of innovators. At the heart of being an engineer is creativity and ingenuity. When people tell me that being an engineer or a scientist is boring, I am aghast. I tell them that being an engineer is the privilege of being the most creative problem solver in the world – with the tools to actually solve the problem! It doesn’t get better than that!

But when I look around our country, we have a problem. We have an education system that is not linked to industry. We have companies that have jobs that can’t be filled because the employee pipeline doesn’t have the necessary skills. I love my job because I am sitting at the crossroads of this challenge, and helping to solve it. I am strengthening our future economy and the health of our country by investing in skills and opportunities of our students. It is humbling.

Q: What’s next for GE Foundation?

The GE Foundation remains committed to empowering all 14-24-year olds to become globally productive citizens by providing access to learning experiences necessary for the workforce of tomorrow. We will continue our initiative in Boston and as we continue to achieve successes in partnership with our best-in-class nonprofit partners, we will extend impact across Massachusetts and the nation by scaling Boston assets and best practices, sharing learnings, convening the best minds and showcasing what is possible. As we move forward, our lens will be toward scale in the areas of collaboration, empowerment and innovation in the areas of education and skills.


Forge your own path: a conversation with Joann Michalik

Q. Tell us about your role. What approach do you take to helping businesses deploy advanced technologies and process improvements?

As Smart Building Practice Co-Leader, I need to be on the forefront of the industry. The role is a combination of leading a team of industry leaders and practitioners while creating the next generation of offerings for clients. At Deloitte, we try to be at the forefront of an issue, so gathering insights from our team, and developing the solution that will bring value to our clients is key. But consulting is more than the next solution – it is about trust in your service provider. My approach is to build relationships and trust over time by bringing the best of the firm, delivering value, and truly partnering with clients.

Last year I had the honor of interviewing over 12 CTOs and visiting 10 Department of Energy National Labs for a survey about “Advanced Technologies in Manufacturing.” This study highlighted what was working and not working in U.S. Manufacturing. The thought leadership provides value to my clients, well beyond any assignment. Instead of coming to me with an assignment, my clients now came to me for insights which led to assignments they had not considered.

The insights developed through these research efforts help business leaders ascertain advanced technologies critical to future competitiveness, and demonstrate the benefits of deploying such technologies. The insights can be used for businesses to see where they are on the maturity curve relative to others and to consider adoption and implementation of enabling technologies that make the most sense for the organization.


Q. What advice do you have for engineers who want to grow into a leadership role in business?

Engineers are particularly good at learning something new or experimenting with a new idea. The skills they need are people skills. One of the best things my mother told me as I went off to engineering school was to find time for “fun.” She was telling me there was more to life than what is found in books.

Leadership is built with the help of others. Your network and your ability to learn will see you through as long as you are willing to push yourself forward. You make mistakes, but that is OK – just don’t make the same mistake twice.

The rate of change is rapidly increasing and jobs will be changing. Your path to leadership is not the path I took, but the one you craft. Build a team. Implement a project. Ride each wave; grab the next wave and ride that one. Just don’t give up learning and trying new things.

Q. Your first job out of college was at General Electric. Tell us about your eleven years there, and what it was like starting out your engineering career at a renowned American company.

When I joined GE, it was the time before Jack Welch (Reggie Jones was CEO). GE and manufacturing were very different. Manufacturing was still a hot spot to grow a career and GE, with a history back to [Thomas] Edison, was the place to be. I don’t remember the percentages of women in manufacturing, but let’s just say it was not common, but I loved it from the start.

I started in the Manufacturing Management Program (MMP) – which was a two-year program for engineers to learn all about manufacturing and be ready to lead. Every six months I got a new job – first production control, then shop supervisor, maintenance engineer, and a raw steel buyer. I worked in the semiconductors, steam turbine & generator, and aerospace instruments businesses. Once I graduated from the MMP Program, I held many more assignments, including working in sales, plant consolidation, and as beta site manager for flow manufacturing (Lean Six Sigma). This rapid succession of new assignments, training, and businesses, allowed me to try new things, take risks in a relatively protected environment and grow.

Q. It appears you’ve had an interest and aptitude for engineering from a young age. As a high school recipient of the Rensselaer Medal and later as a graduate of the U.S.’ oldest technological university, Rensselaer Polytechnic Institute, whom or what do you credit for prompting your interest in STEM?

I credit my family. We were always fixing things, because we had to. I became very hands-on. Math was just fun. I became so good at math, I would often get to an answer without really thinking about it – it just came to me. (I can’t do that now –too many calculators!) But the turning point was my high school physics teacher, Dr. Eaton. Dr. Eaton, had found teaching after a career in industry as a chemical engineer. He made physics fun, saying, “You have to live physics.” He took an interest in me and suggested I consider engineering. At the time, I did not know what engineering was, and my family had less of a clue, but after winning the Rensselaer Medal, I decided to take a look at engineering –and never looked back.

Q. Anything else you’d like us to know?

I highly recommend working with people you like to be around. I am proud of the workplace accomplishments of Deloitte – which are many – but the best part is to be happy working with this team of talented, hard-working, caring and inclusive folks. The days fly by with new challenges and fun problems to solve.

Steven Gacin & Bob Salemme

Steven Gacin

Q. Tell us about what led you to be an engineer. Was there a moment or a person who inspired you to pursue this career?

SG: There was no one moment, but it started at a very young age. Like every developing engineer, I was fascinated with how things worked and I tinkered, and broke, many household items in order to understand exactly how they ticked and why. To calm my idle hands and mind, my father, who was a carpenter, would frequently take me with him on build activities. This only fueled my passion for creating, shaping, forming with meticulous attention to detail and ultimately becoming a “maker.” The STEAM (science, technology, engineering, art and math) programs and the rich and vibrant creative culture that I grew up with in Providence, Rhode Island nurtured my passion for art and design. Combining my love of tinkering, my fascination with creating, and my passion for the arts, science and technology, it’s no wonder that I ultimately became a design engineer!

BS: My high school counselor recommended I give engineering a shot because I did well in math and physics classes. During my first year of college, I was still undecided about what major I wanted to pursue. My academic advisor recommended that I take the Strong Interest Inventory. You answer 300 questions, and based on your likes and dislikes, the results tell you “here are the top ten careers you may enjoy the day-to-day grind of.” Mechanical engineer was third, after college professor and photographer, so I decided to go for it. It has been a tremendously satisfying journey so far.

Q. Your jobs are pretty cool. Which came first – a love of cars or a love of engineering?

SG: My love of engineering came first, and then came my love of cars. Vehicles are a great feat of engineering, the effort and complexity required to make a vehicle and to do it well takes a lot of time. The complexity of design and engineering is especially true for vehicles designed for the consumer market, where you are not just making a metal box with tires to get from point A to point B.

So much needs to be considered to make a vehicle catered to the customer’s needs and satisfaction, from the meticulous design of the transmission, suspension and programming systems for optimal performance on the road, to the extensive crash testing to provide the safest cabin space, and that small seemingly insignificant radius on the center console where your thumb may rest! To create a truly well-crafted vehicle, there is no one field of engineering to get you there. We need individuals from all backgrounds — mechanical, electrical, process, industrial and human factors engineers — to create something that consumers will love. It’s a great way to learn about methods and detail outside your field.

BS: My love for engineering came first, too. I always really enjoyed the lab portions of my engineering classes. There is something really fun about finding different ways to solve open-ended problems. When I started at Honda, my car knowledge was limited – I knew they had four wheels and an engine. As soon as I started the job, I bought myself a car with a manual transmission. I purposely bought a hoopty with the goal of learning how to fix it as it broke down. Honda also provided extensive training programs which enabled me to gain the necessary experience to confidently do the job of a crash test engineer.

Bob Salemme


Q. Steven, what is it about vehicle and occupant safety that you find most interesting? Most challenging?

SG: What I find most interesting about occupant safety is the challenge and complexity of it all. To develop a vehicle that will protect people in a worst-case scenario crash event is no easy feat, and there’s a lot to consider. Every aspect of every vehicle component, from its material selection, to its structure, shape, breaking strength and position, plays a role in a vehicle’s final crash performance. We can’t prevent all crashes from happening… yet. So, we’re tasked with trying to reduce the overall impact to the people in the vehicle, which can be generally done by slowing down the crash event.

How do we do this? First, we must understand that every crash event has three main phenomena:

  • The vehicle crashing into a moving or stationary object
  • The occupant crashing into the vehicle interior once the car’s motion has been affected
  • The occupant’s internal organs crashing into their own skeletal frame.

Injury generally increases as time to decelerate decreases. The faster a vehicle stops during a crash event, the higher the probability for injury. But, if you can increase the time or duration of each phenomenon, you can mitigate the severity of the impact. The longer it takes the vehicle to come to a full the stop, the more delay we see in the speed of impact of the person against the vehicle interior. That allows for the deployment and functionality of the airbag system. The airbag system then reduces the speed of impact of the person’s internal organs against their own skeletal frame, thus reducing injury. Each of these steps adds time to the event; you can think of it like the dream states in the movie Inception. In each of the three main crash phenomenon or “dream states,” there is a small compounding time difference (milliseconds or so) which ultimately accounts for a major difference in the crash that can positively or negatively impact the overall event, depending on how you design and control each part.

Every aspect of every vehicle component, from its material selection, to its structure, shape, breaking strength and position, plays a role in a vehicle’s final crash performance.

– Steven Gacin

Q. Bob, as a front crash engineer for many of Honda’s top-selling vehicles (Accord, Crosstour, Pilot, Odyssey), how do you collaborate with teams across the company to improve vehicle safety?

BS: With over 30,000 parts on the car, there are many different groups involved in bringing a final product to customers. Each group is focused on a different aspect– durability, dynamic performance, crash testing, and fuel economy just to name a few. Each group has priorities which have the potential to negatively impact other groups. For example, if the vehicle was built like a tank, passing safety targets may be easy, but the fuel economy folks may have trouble meeting their targets. The “trick” is finding a balanced system that satisfies all the various groups.

Steven Gacin


Q. Steven, what engineering principle(s) do you apply most to your work on steering wheel feasibility and restraint systems?

SG: The engineering principles I use most generally are manufacturing, testability, integrity, integration, ethics, and design/form.

Manufacturing: The steering wheel or restraint system should be easy and cost effective to create.

Replication: We need to be able to replicate the results and identify those items that can remain constant and isolate others – consistently.

Integrity: The steering wheel or restraint system should have structural integrity. Material selection and part structure are carefully considered.

Integration: The steering wheel or restraint system should have clear “one-way” integration into the system. It cannot be mis-installed, misaligned or misused.

Ethics: The parts should be developed with the best interest of the customer and the company in mind. NO SHORTCUTS.

Design/Form: The parts should be designed for a purpose and it’s GOTTA look good!

Q. Bob, a big part of engineering involves modeling & simulation (M&S) and test & evaluation (T&E). What M&S and T&E processes and technologies does Honda use in its vehicle safety programs?

BS: Prior to crashing any of the cars, there is extensive modeling done to simulate crash tests. We use various software packages to create, run, and post-process the models.

On the test side, during development, we run many component tests & front crash simulator tests (sled tests). Once we have demonstrated that the restraint system has prospect on the sled, we can then run the full-scale crash test. Once the full-scale crash test has been run, the simulation model can be validated. Did the simulation match the test? Why? Why not? How does the simulation need to be tweaked to closer match the physical test?

Once the simulation has been validated, we can confidently use the model to predict the effect of various changes.

Oftentimes, we get emails from people who have been in terrible car accidents. They will send us pictures and thank us for building a car that was safe enough for their family to walk away from after an accident. Moments like these really cement the realization that the work I am doing is helping to save lives.

– Bob Salemme

Q. How does a front crash simulator work? What capabilities does it have that would surprise or impress people?

BS: The front crash simulator uses a hydraulic piston to push a vehicle rearward on a track. As the vehicle moves rearward, the occupants engage the restraints (seatbelts & airbags). Here’s a good video link to demonstrate.

Front crash simulators are an important tool in a crash test engineer’s arsenal. They are a cost-effective way to try many different restraint tuning knobs before going to the full-scale crash test. A sled test may cost just a few thousand dollars whereas early prototype full-scale crashes can sometimes cost up to a million dollars.

Q. What’s it like to know that the work you do every day helps save lives?

BS: Oftentimes, we get emails from people who have been in terrible car accidents. They will send us pictures and thank us for building a car that was safe enough for their family to walk away from after an accident. Moments like these really cement the realization that the work I am doing is helping to save lives.

SG: It is one of the most rewarding experiences. When you work on a vehicle’s development for years, with the need to meet deadlines, cost and weight requirements, industry requirements, government requirements and consumer market trends, it’s easy to get enveloped in the process and lose sight of the underlying reason why you’re doing what you’re doing. But, when you receive that letter from a family you’ve never met, who has just been in an awful accident but walked away alive and with few or no injuries, it helps put things back in perspective and further justify what I do, and who I do it for.

Steven Gacin and Bob Salemme contributed to this Q&A in their personal capacity. The views and opinions expressed are their own, and do not necessarily represent the views of Honda R&D.

Readiness and resiliency: engineering that saves lives

In an image from the IMAX film, Dream Big, engineer Menzer Pehlivan and a group of children enjoy a ride on a roller coaster, a feat of engineering that brings fun and thrills to people everywhere. Photo credit: MacGillivray Freeman Films.

Q. What or who inspired you to become an engineer?

My interest in engineering started with the Kocaeli Earthquake and the devastation in Turkey, my home country, following that event. I was a 13-year-old living in the capital city of Ankara, located approximately in the center of Turkey, when the earthquake hit the northwest region of the country around 3:00 a.m. on August 17, 1999. Although the epicenter of the magnitude 7.4 earthquake was approximately 200 miles away from our hometown, my family and I awoke in fear due to the strong shaking in our apartment. There were more than 17,000 casualties, tens of thousands of injuries, and hundreds of thousands of people left homeless. Hearing that thousands of lives could have been saved if the structures had been designed to satisfy life safety criteria, inspired me to become a civil engineer and to focus on earthquake engineering. I have a strong desire to help reduce risk and increase resiliency —ahead of future natural disasters.

Q. As a geotechnical engineer, you specialize in engineering buildings that keep people safe. How do you learn which building designs and materials increase resiliency in natural disasters?

Geotechnical earthquake engineering is still a young and advancing field. The practice is steadily progressing with evolving technologies that make more advanced computations possible. However, we get the most valuable information through extreme events, which provide us with an opportunity to examine how hazard-resistant design practice performs because it is difficult to replicate the behavior of full-scale, naturally deposited soil over thousands of years in a laboratory. Understanding the performance when a disaster occurs and accurately documenting the post-disaster observations are crucial for advancing engineering practice to reduce risk and increase resiliency before the next natural disaster. Case histories from each event demonstrate the success of good hazard-resistant design practices as well as those that need improvement.
After the 2015 Gorkha Earthquake, I traveled to Nepal for post-earthquake reconnaissance with the Geotechnical Extreme Events Reconnaissance (GEER) team. I spent ten days in Nepal with the GEER team, and we collected valuable data on site response and topographic effects, liquefaction and other ground failure mechanisms, and damage to infrastructure including hydropower plants. During the mission, we had the opportunity to interact with local engineers and to discuss findings, remaining hazards in the region, and potential future actions needed to increase the resiliency, and reduce the earthquake-induced risk, especially for the developing hydropower infrastructure that is of prime importance for the country. We compiled the geotechnical field reconnaissance findings in a GEER Association Report (GEER-040). The report was made available shortly after the 2015 earthquake sequence for researchers and engineering professionals, who can help advance the local state-of-practice and reduce the risk associated with earthquake-induced hazards in the region.

“Every project has its unique challenges, and as engineers, our job is to find the most efficient solution to each problem.”

Dream Big delves into the inspirational story of civil engineer Menzer Pehlivan, who as a young girl experienced a devastating earthquake in Turkey. Here, Menzer uses everyday items to demonstrate to children how engineers design and build earthquake-proof structures. Photo credit: MacGillivray Freeman Films.

Q. Can you tell us about your job (interesting projects you are currently working on) and the skills you need to be successful?

After graduating with my doctorate from The University of Texas at Austin in 2013, I started working as a consulting engineer. I worked in New York City for couple years, and I am currently working as a geotechnical engineer with CH2M in Seattle. I specialize in the analysis of seismic site response, liquefaction and other natural hazards, soil-foundation-structure interaction, probabilistic seismic hazard analysis (PSHA), seismic design of foundation of structures, and performance based design in geotechnical earthquake engineering.

I worked on the geotechnical and seismic design of projects in the U.S., Mexico, Canada, and Costa Rica. Every project has its unique challenges, and as engineers, our job is to find the most efficient solution to each problem. Engineering requires teamwork, and I feel fortunate to work with talented professionals from different backgrounds throughout each project, which provides me with excellent learning opportunities every day.

Engineering is more than just math and science. It is more about imagination, creation, innovation, and teamwork. It is about being open to new ideas, new solutions, and new visions since the engineering profession is continually advancing.

“Engineering is more than just math and science. It is more about imagination, creation, innovation, and teamwork. It is about being open to new ideas, new solutions, and new visions since the engineering profession is continually advancing.”

Q. Do you have any recommendations for engineering grads starting their careers?

Throughout my career, I have benefitted from being involved with professional societies, and I strongly recommend industry participation for every young engineer. During my Ph.D., I took a leading role in the development of the National Student Leadership Council of the American Society of Civil Engineers (ASCE) Geotechnical Engineering Institute (Geo-Institute), for which I served as vice-chair and chair. Recently, I played a leading role in the development of ASCE Geo-Institute’s Board Level Outreach and Engagement Committee, and I am currently serving as the chair.

Being active in professional organizations gave me the unique opportunity to interact with engineering professionals from different backgrounds, learn about the projects they are working on, and have a venue to showcase my work to other professionals. Through my involvement, I started building my network in the industry earlier in my career; now I have professional connections with different specializations across the world that I can collaborate with depending on the needs of a project.

Q. Anything else?

In 2016, I was one of the New Faces of Engineering selected by ASCE. Later on, that nomination led me to be a part of the Dream Big: Engineering Our World, an IMAX movie that aims to inspire next generation, especially girls, to follow STEM careers by changing the stereotypical image of engineers in society. Through Dream Big, we are hoping to reach to kids and show them engineering is fun. Through engineering, they can make an impact in the world and change the people’s lives for better. Moreover, the film shows that they can be successful in engineering regardless of their gender and their background. All they need is to believe in themselves and keep dreaming big. The movie premiered during Engineers Week in February 2017, and the feedback we have been receiving since then has been amazing. In one of the premieres I attended, a girl asked me the project I am most proud of is, and I replied saying “This is it!” It is very rewarding and satisfying when a little girl comes up to you and says “I did not think girls like you can be engineers and change the world! Now I want to be like you too.”