November 2017

INVESTING IN THE FUTURE

When someone has an idea or a revelation, we call it “a lightbulb moment.” The symbol is especially fitting for engineers. The lightbulb is commonly associated with American inventor and businessman Thomas Edison for his patent of the first long-lasting, commercially practical incandescent bulb in 1879. For Kelli Wells, executive director for education for the GE Foundation, lightbulb moments illuminate the path toward and eliminate the skills gap in science, technology, engineering and math (STEM) professions.

Making an Impact: Conversations with the Engineers Who Change Our World

Change is the only constant. That truth, often credited to pre-Socratic philosopher Heraclitus, is especially true for engineers, no matter what their discipline. This year, we interviewed people involved in many various aspects of the engineering, from those who are on a mission to get kids excited about STEM to early career engineers, to entrepreneurs and seasoned veterans. All of them look at engineering from a unique perspective. All of them are on a mission to do things bigger, better, safer, faster.

 

Dream Big

We “dreamed big” with the filmmakers at MacGillivray Freeman Films (MFF). In partnership with the American Society of Civil Engineers (ASCE) and Bechtel Corporation, they produced the IMAX movie “Dream Big: Engineering Our World” showing the remarkable ways engineers are changing our world!

“The challenges engineers are taking on are the big ones: clean water, smart buildings, climate change, creating sustainable cities for tomorrow,” says ASCE Executive Director Tom Smith. “And that means there is a pressing need for lots of young people to bring their fresh ideas. We hope many will be inspired when they see how engineering can take you to different places across the globe, from China to Nepal to Seattle. You also see how different kinds of people – from Avery Bang working in Haiti to a first-generation American such as Angelica Hernandez making her dreams come true in Phoenix to Steve Burrows flying across China – can each make their own individual mark on their communities and the world at large.”

 

Learn More

Engineers and attorneys could learn a lot from each other, and Vanessa Adriana Nadal should know. She’s both. In May, we interviewed Nadal who is an MIT-trained chemical engineer and an attorney who earned her J.D. at Fordham University School of Law. She says engineers and lawyers have more in common than you might think, “Both require superior critical thinking skills, and both benefit from compassionate story-telling.” NEF spoke with Nadal from London (where her husband, Lin-Manuel Miranda, was filming “Mary Poppins Returns”) about what engineers and attorneys can learn from each other, and the cyclical beauty of art, inspiration, and STEM.

She told us, “Math and science are so ubiquitous that people take them for granted. They are everywhere. And they are beautiful. I’m always disheartened when people say that those subjects have little application to the real world. It’s true that you aren’t going to use logarithmic equations on a daily basis, but neither do Socrates, the Iliad, or the works of Michelangelo come up in daily conversation. I think it’s both humbling and inspirational to be able to appreciate the manifestations of our math and science knowledge in our natural world.

Accordingly, one of the huge challenges—and responsibilities—of scientists and engineers is to make our work relevant to others. Of course, engineering students have heavily-loaded majors, so there is understandably little room to incorporate enough humanities classes to turn them into great storytellers. Such is our plight.
But more than just sharing the joys of math and science with the world, good communications skills are necessary to continue being effective scientists and engineers.”

 

Build bridges

For people in many parts of the world, just one bridge can make all the difference. Avery Bang was featured in the IMAX film “Dream Big,” and as the Chief Executive Officer of Bridges to Prosperity, she’s seen first-hand how infrastructure means more than just convenience. We talked to her this year about creativity, failure, and the life-changing power of engineering.

“The built environment is the single most important part of our daily lives – the way we get to and from places, where we sleep, how we learn – and its engineers who create this environment. In the developed world, the everyday contributions of engineers go unnoticed because a working infrastructure is already in place, but in developing countries, that’s not the case,” Bang said.

“Working in a place like Haiti, everything so bare – you don’t live in a house with insulation and bedrooms or have roads that resemble anything we would be familiar with in the U.S. When you work in an environment where there is not a lot already in place, to have something new is really obvious. Something so simple as a bridge in these developing landscapes can be the single most important part of the infrastructure and gives you an appreciation for the difference engineering can make in peoples’ lives. You can provide isolated communities with access essential healthcare, education and economic opportunities.”

Bang went on to say, “When you see engineering in a place where it is noticed and appreciated and people show up to volunteer because they know it is going to make a difference, it makes engineering very human.”

 

Make a difference

Dr. Menzer Pehlivan was 13 years old when she survived a devastating earthquake in Turkey. Today, she’s a geotechnical engineer working to make structures safer to reduce risk and increase resiliency from natural disasters. Through her appearance in the IMAX film “Dream Big,” she’s also working to show children the fun of engineering and its potential to change people’s lives for better.

“…As engineers, our job is to find the most efficient solution to each problem. Engineering requires teamwork, and I feel fortunate to work with talented professionals from different backgrounds throughout each project, which provides me with excellent learning opportunities every day,” Pehlivan told us in August.

“Engineering is more than just math and science. It is more about imagination, creation, innovation, and teamwork. It is about being open to new ideas, new solutions, and new visions since the engineering profession is continually advancing.”

 

Celebrate the can-do spirit

For engineers in the start-up space, there are a lot of hurdles to clear to get their passion project off the ground. But for those who succeed like Ben Waters of Seattle-based WiBotic, it’s worth it. WiBotic makes wireless charging solutions for robots and robot fleets, and is pioneering autonomous charging capabilities for aerial, aquatic and mobile robots. Waters told us, “I’ve been very inspired by the entire process, including the amount of work and thought that went into our strategy and financing and the diligence our investors did on our company. If WiBotic reflects other American companies in terms of the way they go about it, I believe there will be a lot of great companies that start-up. When they’re driven by recognizing a problem and creating a solution that is more cost effective, safer or enables something to be more reliable – those are businesses that I believe can succeed.”

 

Bring others along

We also talked with Alaska Airlines pilot and trained engineer Jeanne Deaver about the importance of mentoring.

“When I was a little girl growing up in western Nebraska, there were very few women in STEM. There were even fewer flying Boeing airplanes at a major airline. I believe the reason I was successful is because of my mentors who provided the guidance and encouragement necessary to help me stay focused. Their words helped shape my inner dialog when things became difficult. I am so thankful to all of them for helping me succeed. This generation has a lot more opportunities to pursue STEM careers. But they must be made aware of their options to know that they exist. That is why it is important for all of us, as professionals, to look back and offer a hand up to the generation behind us. I give back as a mentor at Raisbeck Aviation High School, through Amelia’s Aero Club at Seattle’s Museum of Flight, and by taking the opportunity to show my workplace to every enthusiastic child who is on my flight.”

 

Inspire the future

Rube Goldberg, Inc. (RGI) is making STEM fun on an expanded scale. In a partnership with Spin Master Corp., RGI is offering toys in an exclusive deal with Target. We had to get the story, so we talked to Todd Anderson, toy designer and brand manager at Spin Master and Jennifer George, RGI legacy director and Rube Goldberg’s granddaughter.

Anderson told us about testing the toys with focus groups of kids and even giving the children of Spin Master employees take-home prototypes. “This was very intentional testing. We found that these builds were not as simple as a typical construction or science kit and really require active thinking to get the sets to work and we embraced the difference. Our kits are not the easiest to build and that’s a good thing. You learn more when you fail than when you succeed. Every step is a task to complete, and this remains true to the spirit of all Rube Goldberg inventions,” he said.

 

Try something new

No two roads to leadership are the same. As a Smart Building Practice Co-Leader at Deloitte, Joann Michalis is like many engineers, she solves problems – and takes risks.

She says, “Engineers are particularly good at learning something new or experimenting with a new idea…Leadership is built with the help of others. Your network and your ability to learn will see you through as long as you are willing to push yourself forward. You make mistakes, but that is OK – just don’t make the same mistake twice.”

“The rate of change is rapidly increasing and jobs will be changing. Your path to leadership is not the path I took, but the one you craft. Build a team. Implement a project. Ride each wave; grab the next wave and ride that one. Just don’t give up learning and trying new things.”

 

We can’t wait to see what 2018 holds for engineers and their impact on the world we live in.

Investing in the Future

Photo credit: GE Foundation

As Executive Director for Education for the GE Foundation, Kelli Wells influences the future of American engineering. She’s focused on managing partnerships to close the skills gap and ignite a spark of passion in students as they realize what being an engineer really means.

Q: Solving the capacity challenge, or the “skills gap,” is a priority of GE Foundation. How do these efforts specifically benefit engineers?

As the first digital industrial company, GE is acutely aware of the need to expand the number of students who ultimately pursue degrees and careers in engineering fields and to broaden the participation of underrepresented populations. Increasing engineering skills for all students is critical to achieving a scientifically and technologically literate society that will enhance our nation’s global competitiveness.

Through our commitment to engineering, we are investing in the next generation’s problem solvers to look at what will be needed in the economy and address it through world-class education pipelines. We are working across stakeholder lines to equip all students with the education, skills and training that they need for the demands of the workforce and the global labor economy. Through our initiatives, engineers cultivate both technical skills and essential skills necessary for career success.

Q: Tell us about the concept behind the GE Brilliant Career Labs. How are the lab’s physical and virtual learning experiences helping students explore career options and find future engineering jobs?

The GE Brilliant Career Lab is a first-of-its-kind mobile and digital technology lab experience designed to prepare students for the digital industrial jobs of the future. The mobile lab combines experiential learning with career-readiness planning in high-demand STEM fields, offering both technical skills development and essential skills training. Through the mobile lab, students become familiar with new technologies, such as 3-D printers, laser cutters, milling machines, and programming tools. They are able to work on projects to help them understand the uses and features of the equipment. The Brilliant Career Lab’s virtual experience website houses career assessments that identify potential STEM and computer science careers paths for each student, and interactive activities that teach students about specific opportunities based on their interests and skills.

Q: Do you have a story you can share of a student who benefitted from the GE Foundation and went on to pursue a career in engineering?

Three years ago, a Boston student, Rafaelo, and his mother moved from Puerto Rico to Boston with nothing but the clothes on their backs. Shortly after arriving in the U.S., despite his mother having secured a job at Walgreens, they became homeless and landed in various shelters. Finally, an aunt was able to take them in. The apartment complex they lived in had rampant drug use, gangs and violence. Each day was a struggle because he was focused on surviving, which meant, staying out of gangs, staying clear of drugs and staying out of fights.

Six months ago, Rafaelo was introduced to the Brilliant Career Lab and began exploring various STEM careers for the first time. Rafaelo’s world began to open with possibility; he took a career assessment and fell in love with the idea of becoming an engineer. This spark has grown into a passion, and Rafaelo said, for the first time, “I can see myself going to college. I learned that I could study computer science and become a video game designer.” Rafaelo is currently working on his application to several Boston area colleges with the goal of becoming an engineer.

Photo credit: GE Foundation

Q: The course of your career includes an impressive twenty years at GE. Before your current role in corporate citizenship, you worked in asset management, quality, and international marketing. What have you gained from trying out different roles in different areas of the business?

For me, cultivating different perspectives is critical. I am grateful for the various roles that I have held because they inform my thinking now. I am able to approach problems from different angles.

I also think it helps me to be empathetic. In my work, I engage with business leaders, educators, students and politicians. Because I have worked in various roles, I am able to see different perspectives. I am able to build connections, identify shared values, and build cohesion among stakeholders.

As I talk to students, I stress my diverse background and tell them that the skills that they develop are not necessarily about specific technical skills, but more broadly about becoming a problem solver, a critical thinker, a dreamer and a doer. These are skills that are fundamental to success no matter the job title.

…being an engineer is the privilege of being the most creative problem solver in the world – with the tools to actually solve the problem! It doesn’t get better than that!

Q: What do you enjoy most about helping the next generation of engineers and scientists?

It is so exciting to see the spark of intrigue in a student. And then it’s even more fulfilling to watch that spark turn into genuine interest, turn into a college experience, turn into a career. Passion starts somewhere, and I am in the great position of being able to watch that process happen with students every day.

On a personal level, I love our country and love that we are a nation of innovators. At the heart of being an engineer is creativity and ingenuity. When people tell me that being an engineer or a scientist is boring, I am aghast. I tell them that being an engineer is the privilege of being the most creative problem solver in the world – with the tools to actually solve the problem! It doesn’t get better than that!

But when I look around our country, we have a problem. We have an education system that is not linked to industry. We have companies that have jobs that can’t be filled because the employee pipeline doesn’t have the necessary skills. I love my job because I am sitting at the crossroads of this challenge, and helping to solve it. I am strengthening our future economy and the health of our country by investing in skills and opportunities of our students. It is humbling.

Q: What’s next for GE Foundation?

The GE Foundation remains committed to empowering all 14-24-year olds to become globally productive citizens by providing access to learning experiences necessary for the workforce of tomorrow. We will continue our initiative in Boston and as we continue to achieve successes in partnership with our best-in-class nonprofit partners, we will extend impact across Massachusetts and the nation by scaling Boston assets and best practices, sharing learnings, convening the best minds and showcasing what is possible. As we move forward, our lens will be toward scale in the areas of collaboration, empowerment and innovation in the areas of education and skills.

 

October 2017

FORGE YOUR OWN PATH

No two roads to leadership are the same. As a Smart Building Practice Co-Leader at Deloitte, Joann Michalik is like many engineers – she solves problems. She’s also a risk taker, a relationship builder and someone knows the value of having fun. Click the button below to read more about how Joann makes sure she’s staying on the forefront and delivering for her clients and her team.

Forge your own path: a conversation with Joann Michalik

Q. Tell us about your role. What approach do you take to helping businesses deploy advanced technologies and process improvements?

As Smart Building Practice Co-Leader, I need to be on the forefront of the industry. The role is a combination of leading a team of industry leaders and practitioners while creating the next generation of offerings for clients. At Deloitte, we try to be at the forefront of an issue, so gathering insights from our team, and developing the solution that will bring value to our clients is key. But consulting is more than the next solution – it is about trust in your service provider. My approach is to build relationships and trust over time by bringing the best of the firm, delivering value, and truly partnering with clients.

Last year I had the honor of interviewing over 12 CTOs and visiting 10 Department of Energy National Labs for a survey about “Advanced Technologies in Manufacturing.” This study highlighted what was working and not working in U.S. Manufacturing. The thought leadership provides value to my clients, well beyond any assignment. Instead of coming to me with an assignment, my clients now came to me for insights which led to assignments they had not considered.

The insights developed through these research efforts help business leaders ascertain advanced technologies critical to future competitiveness, and demonstrate the benefits of deploying such technologies. The insights can be used for businesses to see where they are on the maturity curve relative to others and to consider adoption and implementation of enabling technologies that make the most sense for the organization.

 

Q. What advice do you have for engineers who want to grow into a leadership role in business?

Engineers are particularly good at learning something new or experimenting with a new idea. The skills they need are people skills. One of the best things my mother told me as I went off to engineering school was to find time for “fun.” She was telling me there was more to life than what is found in books.

Leadership is built with the help of others. Your network and your ability to learn will see you through as long as you are willing to push yourself forward. You make mistakes, but that is OK – just don’t make the same mistake twice.

The rate of change is rapidly increasing and jobs will be changing. Your path to leadership is not the path I took, but the one you craft. Build a team. Implement a project. Ride each wave; grab the next wave and ride that one. Just don’t give up learning and trying new things.

Q. Your first job out of college was at General Electric. Tell us about your eleven years there, and what it was like starting out your engineering career at a renowned American company.

When I joined GE, it was the time before Jack Welch (Reggie Jones was CEO). GE and manufacturing were very different. Manufacturing was still a hot spot to grow a career and GE, with a history back to [Thomas] Edison, was the place to be. I don’t remember the percentages of women in manufacturing, but let’s just say it was not common, but I loved it from the start.

I started in the Manufacturing Management Program (MMP) – which was a two-year program for engineers to learn all about manufacturing and be ready to lead. Every six months I got a new job – first production control, then shop supervisor, maintenance engineer, and a raw steel buyer. I worked in the semiconductors, steam turbine & generator, and aerospace instruments businesses. Once I graduated from the MMP Program, I held many more assignments, including working in sales, plant consolidation, and as beta site manager for flow manufacturing (Lean Six Sigma). This rapid succession of new assignments, training, and businesses, allowed me to try new things, take risks in a relatively protected environment and grow.

Q. It appears you’ve had an interest and aptitude for engineering from a young age. As a high school recipient of the Rensselaer Medal and later as a graduate of the U.S.’ oldest technological university, Rensselaer Polytechnic Institute, whom or what do you credit for prompting your interest in STEM?

I credit my family. We were always fixing things, because we had to. I became very hands-on. Math was just fun. I became so good at math, I would often get to an answer without really thinking about it – it just came to me. (I can’t do that now –too many calculators!) But the turning point was my high school physics teacher, Dr. Eaton. Dr. Eaton, had found teaching after a career in industry as a chemical engineer. He made physics fun, saying, “You have to live physics.” He took an interest in me and suggested I consider engineering. At the time, I did not know what engineering was, and my family had less of a clue, but after winning the Rensselaer Medal, I decided to take a look at engineering –and never looked back.

Q. Anything else you’d like us to know?

I highly recommend working with people you like to be around. I am proud of the workplace accomplishments of Deloitte – which are many – but the best part is to be happy working with this team of talented, hard-working, caring and inclusive folks. The days fly by with new challenges and fun problems to solve.

September 2017

CRASH TEST SMARTIES

Steven Gacin and Bob Salemme didn’t start out as car enthusiasts, but it’s a good thing these two Honda R&D Americas engineers grew to love automobiles, because their job is keeping people safe on the road every day. Gacin is an interior design engineer and Salemme is a vehicle safety engineer specializing in front crashworthiness.

Read on for the inside scoop on how they engineer safety with an eye on design and performance.

Steven Gacin & Bob Salemme

Steven Gacin

Q. Tell us about what led you to be an engineer. Was there a moment or a person who inspired you to pursue this career?

SG: There was no one moment, but it started at a very young age. Like every developing engineer, I was fascinated with how things worked and I tinkered, and broke, many household items in order to understand exactly how they ticked and why. To calm my idle hands and mind, my father, who was a carpenter, would frequently take me with him on build activities. This only fueled my passion for creating, shaping, forming with meticulous attention to detail and ultimately becoming a “maker.” The STEAM (science, technology, engineering, art and math) programs and the rich and vibrant creative culture that I grew up with in Providence, Rhode Island nurtured my passion for art and design. Combining my love of tinkering, my fascination with creating, and my passion for the arts, science and technology, it’s no wonder that I ultimately became a design engineer!

BS: My high school counselor recommended I give engineering a shot because I did well in math and physics classes. During my first year of college, I was still undecided about what major I wanted to pursue. My academic advisor recommended that I take the Strong Interest Inventory. You answer 300 questions, and based on your likes and dislikes, the results tell you “here are the top ten careers you may enjoy the day-to-day grind of.” Mechanical engineer was third, after college professor and photographer, so I decided to go for it. It has been a tremendously satisfying journey so far.

Q. Your jobs are pretty cool. Which came first – a love of cars or a love of engineering?

SG: My love of engineering came first, and then came my love of cars. Vehicles are a great feat of engineering, the effort and complexity required to make a vehicle and to do it well takes a lot of time. The complexity of design and engineering is especially true for vehicles designed for the consumer market, where you are not just making a metal box with tires to get from point A to point B.

So much needs to be considered to make a vehicle catered to the customer’s needs and satisfaction, from the meticulous design of the transmission, suspension and programming systems for optimal performance on the road, to the extensive crash testing to provide the safest cabin space, and that small seemingly insignificant radius on the center console where your thumb may rest! To create a truly well-crafted vehicle, there is no one field of engineering to get you there. We need individuals from all backgrounds — mechanical, electrical, process, industrial and human factors engineers — to create something that consumers will love. It’s a great way to learn about methods and detail outside your field.

BS: My love for engineering came first, too. I always really enjoyed the lab portions of my engineering classes. There is something really fun about finding different ways to solve open-ended problems. When I started at Honda, my car knowledge was limited – I knew they had four wheels and an engine. As soon as I started the job, I bought myself a car with a manual transmission. I purposely bought a hoopty with the goal of learning how to fix it as it broke down. Honda also provided extensive training programs which enabled me to gain the necessary experience to confidently do the job of a crash test engineer.

Bob Salemme

 

Q. Steven, what is it about vehicle and occupant safety that you find most interesting? Most challenging?

SG: What I find most interesting about occupant safety is the challenge and complexity of it all. To develop a vehicle that will protect people in a worst-case scenario crash event is no easy feat, and there’s a lot to consider. Every aspect of every vehicle component, from its material selection, to its structure, shape, breaking strength and position, plays a role in a vehicle’s final crash performance. We can’t prevent all crashes from happening… yet. So, we’re tasked with trying to reduce the overall impact to the people in the vehicle, which can be generally done by slowing down the crash event.

How do we do this? First, we must understand that every crash event has three main phenomena:

  • The vehicle crashing into a moving or stationary object
  • The occupant crashing into the vehicle interior once the car’s motion has been affected
  • The occupant’s internal organs crashing into their own skeletal frame.

Injury generally increases as time to decelerate decreases. The faster a vehicle stops during a crash event, the higher the probability for injury. But, if you can increase the time or duration of each phenomenon, you can mitigate the severity of the impact. The longer it takes the vehicle to come to a full the stop, the more delay we see in the speed of impact of the person against the vehicle interior. That allows for the deployment and functionality of the airbag system. The airbag system then reduces the speed of impact of the person’s internal organs against their own skeletal frame, thus reducing injury. Each of these steps adds time to the event; you can think of it like the dream states in the movie Inception. In each of the three main crash phenomenon or “dream states,” there is a small compounding time difference (milliseconds or so) which ultimately accounts for a major difference in the crash that can positively or negatively impact the overall event, depending on how you design and control each part.

Every aspect of every vehicle component, from its material selection, to its structure, shape, breaking strength and position, plays a role in a vehicle’s final crash performance.

– Steven Gacin

Q. Bob, as a front crash engineer for many of Honda’s top-selling vehicles (Accord, Crosstour, Pilot, Odyssey), how do you collaborate with teams across the company to improve vehicle safety?

BS: With over 30,000 parts on the car, there are many different groups involved in bringing a final product to customers. Each group is focused on a different aspect– durability, dynamic performance, crash testing, and fuel economy just to name a few. Each group has priorities which have the potential to negatively impact other groups. For example, if the vehicle was built like a tank, passing safety targets may be easy, but the fuel economy folks may have trouble meeting their targets. The “trick” is finding a balanced system that satisfies all the various groups.

Steven Gacin

 

Q. Steven, what engineering principle(s) do you apply most to your work on steering wheel feasibility and restraint systems?

SG: The engineering principles I use most generally are manufacturing, testability, integrity, integration, ethics, and design/form.

Manufacturing: The steering wheel or restraint system should be easy and cost effective to create.

Replication: We need to be able to replicate the results and identify those items that can remain constant and isolate others – consistently.

Integrity: The steering wheel or restraint system should have structural integrity. Material selection and part structure are carefully considered.

Integration: The steering wheel or restraint system should have clear “one-way” integration into the system. It cannot be mis-installed, misaligned or misused.

Ethics: The parts should be developed with the best interest of the customer and the company in mind. NO SHORTCUTS.

Design/Form: The parts should be designed for a purpose and it’s GOTTA look good!

Q. Bob, a big part of engineering involves modeling & simulation (M&S) and test & evaluation (T&E). What M&S and T&E processes and technologies does Honda use in its vehicle safety programs?

BS: Prior to crashing any of the cars, there is extensive modeling done to simulate crash tests. We use various software packages to create, run, and post-process the models.

On the test side, during development, we run many component tests & front crash simulator tests (sled tests). Once we have demonstrated that the restraint system has prospect on the sled, we can then run the full-scale crash test. Once the full-scale crash test has been run, the simulation model can be validated. Did the simulation match the test? Why? Why not? How does the simulation need to be tweaked to closer match the physical test?

Once the simulation has been validated, we can confidently use the model to predict the effect of various changes.

Oftentimes, we get emails from people who have been in terrible car accidents. They will send us pictures and thank us for building a car that was safe enough for their family to walk away from after an accident. Moments like these really cement the realization that the work I am doing is helping to save lives.

– Bob Salemme

Q. How does a front crash simulator work? What capabilities does it have that would surprise or impress people?

BS: The front crash simulator uses a hydraulic piston to push a vehicle rearward on a track. As the vehicle moves rearward, the occupants engage the restraints (seatbelts & airbags). Here’s a good video link to demonstrate.

Front crash simulators are an important tool in a crash test engineer’s arsenal. They are a cost-effective way to try many different restraint tuning knobs before going to the full-scale crash test. A sled test may cost just a few thousand dollars whereas early prototype full-scale crashes can sometimes cost up to a million dollars.

Q. What’s it like to know that the work you do every day helps save lives?

BS: Oftentimes, we get emails from people who have been in terrible car accidents. They will send us pictures and thank us for building a car that was safe enough for their family to walk away from after an accident. Moments like these really cement the realization that the work I am doing is helping to save lives.

SG: It is one of the most rewarding experiences. When you work on a vehicle’s development for years, with the need to meet deadlines, cost and weight requirements, industry requirements, government requirements and consumer market trends, it’s easy to get enveloped in the process and lose sight of the underlying reason why you’re doing what you’re doing. But, when you receive that letter from a family you’ve never met, who has just been in an awful accident but walked away alive and with few or no injuries, it helps put things back in perspective and further justify what I do, and who I do it for.

Steven Gacin and Bob Salemme contributed to this Q&A in their personal capacity. The views and opinions expressed are their own, and do not necessarily represent the views of Honda R&D.

August 2017

READINESS AND RESILIENCY: ENGINEERING THAT SAVES LIVES

Dr. Menzer Pehlivan was 13 years old when she survived a devastating earthquake in Turkey. Today, she’s a geotechnical engineer working to make structures safer to reduce risk and increase resiliency from natural disasters. Through her appearance in the IMAX film “Dream Big,” she’s also working to show children the fun of engineering and its potential to change people’s lives for better.

Readiness and resiliency: engineering that saves lives

In an image from the IMAX film, Dream Big, engineer Menzer Pehlivan and a group of children enjoy a ride on a roller coaster, a feat of engineering that brings fun and thrills to people everywhere. Photo credit: MacGillivray Freeman Films.

Q. What or who inspired you to become an engineer?

My interest in engineering started with the Kocaeli Earthquake and the devastation in Turkey, my home country, following that event. I was a 13-year-old living in the capital city of Ankara, located approximately in the center of Turkey, when the earthquake hit the northwest region of the country around 3:00 a.m. on August 17, 1999. Although the epicenter of the magnitude 7.4 earthquake was approximately 200 miles away from our hometown, my family and I awoke in fear due to the strong shaking in our apartment. There were more than 17,000 casualties, tens of thousands of injuries, and hundreds of thousands of people left homeless. Hearing that thousands of lives could have been saved if the structures had been designed to satisfy life safety criteria, inspired me to become a civil engineer and to focus on earthquake engineering. I have a strong desire to help reduce risk and increase resiliency —ahead of future natural disasters.

Q. As a geotechnical engineer, you specialize in engineering buildings that keep people safe. How do you learn which building designs and materials increase resiliency in natural disasters?

Geotechnical earthquake engineering is still a young and advancing field. The practice is steadily progressing with evolving technologies that make more advanced computations possible. However, we get the most valuable information through extreme events, which provide us with an opportunity to examine how hazard-resistant design practice performs because it is difficult to replicate the behavior of full-scale, naturally deposited soil over thousands of years in a laboratory. Understanding the performance when a disaster occurs and accurately documenting the post-disaster observations are crucial for advancing engineering practice to reduce risk and increase resiliency before the next natural disaster. Case histories from each event demonstrate the success of good hazard-resistant design practices as well as those that need improvement.
After the 2015 Gorkha Earthquake, I traveled to Nepal for post-earthquake reconnaissance with the Geotechnical Extreme Events Reconnaissance (GEER) team. I spent ten days in Nepal with the GEER team, and we collected valuable data on site response and topographic effects, liquefaction and other ground failure mechanisms, and damage to infrastructure including hydropower plants. During the mission, we had the opportunity to interact with local engineers and to discuss findings, remaining hazards in the region, and potential future actions needed to increase the resiliency, and reduce the earthquake-induced risk, especially for the developing hydropower infrastructure that is of prime importance for the country. We compiled the geotechnical field reconnaissance findings in a GEER Association Report (GEER-040). The report was made available shortly after the 2015 earthquake sequence for researchers and engineering professionals, who can help advance the local state-of-practice and reduce the risk associated with earthquake-induced hazards in the region.

“Every project has its unique challenges, and as engineers, our job is to find the most efficient solution to each problem.”

Dream Big delves into the inspirational story of civil engineer Menzer Pehlivan, who as a young girl experienced a devastating earthquake in Turkey. Here, Menzer uses everyday items to demonstrate to children how engineers design and build earthquake-proof structures. Photo credit: MacGillivray Freeman Films.

Q. Can you tell us about your job (interesting projects you are currently working on) and the skills you need to be successful?

After graduating with my doctorate from The University of Texas at Austin in 2013, I started working as a consulting engineer. I worked in New York City for couple years, and I am currently working as a geotechnical engineer with CH2M in Seattle. I specialize in the analysis of seismic site response, liquefaction and other natural hazards, soil-foundation-structure interaction, probabilistic seismic hazard analysis (PSHA), seismic design of foundation of structures, and performance based design in geotechnical earthquake engineering.

I worked on the geotechnical and seismic design of projects in the U.S., Mexico, Canada, and Costa Rica. Every project has its unique challenges, and as engineers, our job is to find the most efficient solution to each problem. Engineering requires teamwork, and I feel fortunate to work with talented professionals from different backgrounds throughout each project, which provides me with excellent learning opportunities every day.

Engineering is more than just math and science. It is more about imagination, creation, innovation, and teamwork. It is about being open to new ideas, new solutions, and new visions since the engineering profession is continually advancing.

“Engineering is more than just math and science. It is more about imagination, creation, innovation, and teamwork. It is about being open to new ideas, new solutions, and new visions since the engineering profession is continually advancing.”

Q. Do you have any recommendations for engineering grads starting their careers?

Throughout my career, I have benefitted from being involved with professional societies, and I strongly recommend industry participation for every young engineer. During my Ph.D., I took a leading role in the development of the National Student Leadership Council of the American Society of Civil Engineers (ASCE) Geotechnical Engineering Institute (Geo-Institute), for which I served as vice-chair and chair. Recently, I played a leading role in the development of ASCE Geo-Institute’s Board Level Outreach and Engagement Committee, and I am currently serving as the chair.

Being active in professional organizations gave me the unique opportunity to interact with engineering professionals from different backgrounds, learn about the projects they are working on, and have a venue to showcase my work to other professionals. Through my involvement, I started building my network in the industry earlier in my career; now I have professional connections with different specializations across the world that I can collaborate with depending on the needs of a project.

Q. Anything else?

In 2016, I was one of the New Faces of Engineering selected by ASCE. Later on, that nomination led me to be a part of the Dream Big: Engineering Our World, an IMAX movie that aims to inspire next generation, especially girls, to follow STEM careers by changing the stereotypical image of engineers in society. Through Dream Big, we are hoping to reach to kids and show them engineering is fun. Through engineering, they can make an impact in the world and change the people’s lives for better. Moreover, the film shows that they can be successful in engineering regardless of their gender and their background. All they need is to believe in themselves and keep dreaming big. The movie premiered during Engineers Week in February 2017, and the feedback we have been receiving since then has been amazing. In one of the premieres I attended, a girl asked me the project I am most proud of is, and I replied saying “This is it!” It is very rewarding and satisfying when a little girl comes up to you and says “I did not think girls like you can be engineers and change the world! Now I want to be like you too.”

July 2017

POWERING THE HEART OF A ROBOT

Robots are amazing, useful, and awe inspiring. But without power, they’re nothing but a bunch of parts. Seattle-based WiBotic, maker of wireless charging solutions for robots and robot fleets, is pioneering autonomous charging capabilities for aerial, aquatic and mobile robots. We talked to CEO and electrical engineer Ben Waters about working to solve one of the biggest challenges to achieving autonomy and highly reliable systems that don’t require downtime.